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Abstract. For the Toda lattice and the Henon–Heiles system we consider properties of the
canonical transformations of the extended phase space, which preserve integrability. At the special
values of integrals of motion the integral trajectories, separated variables and the action variables
are invariant under change of the time. On the other hand, mapping of the time induces a shift of
the generating function of the Bäcklund transformation.

1. Introduction

Let us consider some integrable system on a 2n-dimensional symplectic manifold M endowed
with a symplectic form� and some coordinates {pj , qj }nj=1. Introduce transformations of the
time and the Hamilton function

t �→ t̃ d̃t = v(p, q) dt

H �→ H̃ H̃ = v(p, q)−1H
(1.1)

which map a given completely integrable system into the other completely integrable system
on M. For instance, the Maupertuis–Jacobi mapping [2] and the Kepler change of the time
[19, 20] belong to such transformations.

The transformations (1.1) change the initial equations of motion

dqi
d̃t

= v−1(p, q)

(
dqi
dt

− H̃ ∂v

∂pi

)
dpi
d̃t

= v−1(p, q)

(
dpi
dt

+ H̃
∂v

∂qi

)
but preserve the canonical form of the Hamilton–Jacobi equation

∂S
∂t

+H = 0 where S =
∫ (
pq̇ −H(p, q)) dt. (1.2)

Since, transformations (1.1) may be called canonical transformations of the extended phase
space ME [19]. However, as the Maupertuis–Jacobi [2] and the Kepler transformations
[19], these transformations do not in general retain the corresponding differential 2-form
� = ∑

dpi ∧ dqi − dH ∧ dt in the extended phase space ME .
On a 2n-dimensional symplectic manifold M solution of the Hamilton–Jacobi

equation (1.2) is an n-dimensional Lagrangian submanifold C(n) [21] lying on the fixed energy
surface

C(n) ⊂ Q2n−1 :
(
H(p, q) = E).

0305-4470/00/264825+11$30.00 © 2000 IOP Publishing Ltd 4825
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Recall that a Lagrangian submanifold is one where the symplectic form � vanishes when
restricted to it �|C = 0. This definition is completely invariant with respect to change of local
coordinates and the implicit representation of the Lagrangian submanifold [1, 21]. The time t
is an external parameter related to some parametrization of the Lagrangian foliation.

Of course, starting from solution C(n) we cannot reconstruct the whole fixed energy surface
Q2n−1 and the Hamilton–Jacobi equation (1.2). So, due to the Maupertuis principle, the time
t and the corresponding Hamilton function H cannot be restored from a given Lagrangian
foliation C(n) [1]. In this and several other unexpected situations in mathematics, dynamics is
occasionally invading mathematical objects in which time is not present in the definition and
yet the object can be endowed with various dynamical system structures, which are continuous
or discrete.

Canonical transformations of the extended phase space (1.1) determine various
parametrizations of a given Lagrangian submanifold. Each new parametric form of C(n) yields
a new Hamiltonian system related to the same geometric object. So, we can suppose that these
different integrable systems have some common properties.

Usually, the Lagrangian submanifold depends on the n + m arbitrary constants. The n
constants α1, . . . , αn are identified with the values of integrals of motion Ij = αj [21], while
the remaining m constants a1, . . . , am are free parameters. Below we will discuss a special
class of different parametric forms of a Lagrangian submanifold, which is associated with
mutual permutations of energy E and parameter ak .

The passage from a given parametrization to the another one gives rise to the
transformations of all the properties of integrable systems, such as integrals of motion, Lax
equations and r-matrix algebras, separated variables and the action-angles variables [17–20].

In this paper we continue to study these induced transformations. The aim of this paper
is to understand some general features of the canonical transformations (1.1) of the extended
phase space for such different integrable systems as the Toda lattice and the Henon–Heiles
system, which belong to the family of integrable Stäckel systems.

2. The Henon–Heiles integrable systems

The equations of motion of the Henon–Heiles system [14] derive from the following Hamilton
function:

H = 1
2 (p

2
x + p2

y) + 2ax(βx2 + 3y2 + b) a, b ∈ R (2.1)

using the standard Hamilton equations

ż = ∂H

∂pz
= pz ṗz = −∂H

∂z
z = x, y. (2.2)

Only three integrable cases are known [14]

(a) β = 1 (b) β = 6 (c) β = 16 (2.3)

while the remaining parameters a and b be an arbitrary constants.
According to [14, 17], canonical transformation of the extended phase space (1.1)

v = x d̃t = x dt H̃ = x−1(H − c) c ∈ R (2.4)

preserves integrability and maps the Henon–Heiles system into the other integrable system.
Mapping (2.4) induces the following almost multiplicative transformations of the initial
equations of motion (2.2):

dx

d̃t
= v−1ẋ

dpx
d̃t

= v−1(ṗx + H̃ )
dy

d̃t
= v−1ẏ

dpy
d̃t

= v−1ṗy .
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After a canonical change of variables

x = (
3
2x
)2/3

px = px
(

3
2x
)1/3

y = −2
√

3ay py = py

2
√

3a

and a rescaling of parameters

a → 1
4a
(

2
3

)1/3
b → b

2a
c → ac( 2

3 )
−2/3

the new Hamilton function H̃ (2.4) becomes

H̃ = 1
2 (p

2
x + p2

y) + ax−2/3( 3
4βx2 + y2 − c) + b. (2.5)

This Hamilton function describes the so-called Drach–Holt system [14, 17]. At β = 1 and at
β = 16 the corresponding Lax matrices are 3 × 3 matrices and the spectral curves are trigonal
algebraic curves [6]. We shall consider these more complicated cases in the forthcoming
publications.

According to [6, 17], at β = 6 the 2 × 2 Lax matrix L(λ) for the Henon–Heiles system is
equal to

L(λ) =
(

A B

C −A

)
(λ) =


px

2
− pyy

4λ
λ + x − y2

4
λ

p2
y

4
λ −px

2
+
pyy

4λ


+6a

(
0 0

λ2 − xλ + x2 + 1
4y

2 + 1
6b 0

)
(2.6)

whereas the second matrix in the Lax equation L̇ = [L,A] is given by

A(λ) =
(

0 1
6a(λ− 2x) 0

)
.

Canonical transformation of the extended phase space (2.4) gives rise to the mapping of these
Lax matrices

L̃(λ) = L(λ)− 1

2
H̃

(
0 0

1 0

)
Ã(λ) = 1

x
A(λ) (2.7)

and the following transformations of the corresponding hyperelliptic spectral curves:

C:µ2 = P(λ) = 6aλ3 + abλ +
H

2
+
K

λ

C̃:µ2 = P̃ (λ) = 6aλ3 +
(
ab − 1

2 H̃
)
λ +

c

2
+
K̃

λ
.

(2.8)

The corresponding transformation of the r-matrix Poisson brackets has been considered in
[17].

Substituting some fixed values of integrals of motion into the symmetric product of spectral
curves (2.8) one obtains a Lagrangian submanifold C(2) = C×C, which depends on parameters
a, b, α1 = H,α2 = K or a, c, β1 = H̃ , β2 = K̃ , respectively. Canonical transformation of
the extended phase space (2.4) changes the parametric forms of the common Lagrangian
submanifold only.
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The separation variables {λ1λ2} for both systems are zeros of the common non-diagonal
entry of the Lax matrices L(λ) and L̃(λ)

B(λ) = (λ− λ1)(λ− λ2)

λ
(2.9)

and values of the second common entry

µi = A(λi) i = 1, 2

see references in [17].
The variables {λ1,2, µ1,2} are the standard parabolic coordinates, which lie on the

hyperelliptic curves (2.8). Applying Arnold’s method [1], action variables have the form

si =
∮
Ai

√
P(λ) dλ s̃i =

∮
Ãi

√
P̃ (λ) dλ (2.10)

where Ai and Ãi are A-cycles of the Jacobi variety of the algebraic curves (2.8), respectively.
Thus, the Abel transformation linearizes equations of motion using first kind Abelian
differentials on the corresponding hyperelliptic spectral curves.

Let the parameter b determine the potential of the Henon–Heiles system (2.1) and
parameters b̃ and c define the potential of the Holt system (2.5). At the special choice of
values of integrals of motion

H = c H̃ = 2(̃b − b) K = K̃ = α
the initial spectral curve is equal to the resulting curve (2.8). Thus, as for the Maupertuis–Jacobi
mapping [2], integral trajectories of the Henon–Heiles system coincide with the trajectories of
the Holt system on the intersection of the corresponding common levels of integrals Mα and
M̃α . In the neighbourhood of this intersection we can introduce the common set of the action
variables (2.10) for the both systems. So, in this small subvariety of the phase space M the
function v(p, q) = v(s) is a constant of motion.

Now let us consider the known Bäcklund transformation Bν for the Henon–Heiles system
[8, 22], which can be described by the generating function

F(x, y |X, Y ) = −
√

6aνyY + 2
5

√
6a(ν − x −X)

× (
2ν2 + (x +X)ν + 2x2 − xX + 2X2 + 5

4 (y
2 + Y 2) + 5

6b
)
. (2.11)

The Bäcklund transformation Bν preserves the spectrum of the Lax matrix L(λ) (2.6) (for
instance, see [8, 12])

M(λ, ν)L(λ, x, y) = L(λ,X, Y )M(λ, ν) (2.12)

where

M(λ, ν) =
(

z 1

6a(λ− ν) + z2 z

)
z = −

√
6a(ν − x −X). (2.13)

Canonical transformation of the extended phase space (2.4) maps the initial Mumford system
into the other Mumford system [11] and preserves the spectral curve and entries A(λ), B(λ)

of the Lax matrix. Recall, according to the algebro-geometric description of the Bäcklund
transformation for the Mumford systems, namely the curve and these entries determine the
matrix M. Thus, the mapping (2.4) has to preserve the matrix M. To substitute a new Lax



Properties of the Toda lattice and the Henon–Heiles system 4829

matrix L̃(λ) into the Darboux equation (2.12) with the same matrix M (2.13) we have to shift
the initial generating function (2.11)

F̃ = F +
z

6a
H̃ .

Here the Hamiltonian H̃ is an independent variable of the extended phase space ME . This
means that all the partial derivatives of H̃ with respect to any other coordinates of ME are equal
to zero. Thus, the generating function F̃ gives rise to canonical Bäcklund transformations of
the extended phase space ME .

3. The Toda lattice

The equations of motion of the periodic Toda lattice derive from the following Hamilton
function:

H(p, q) = 1
2

n∑
i=1

p2
i + aie

qi−qi+1 ai ∈ R. (3.1)

They take the form

q̇i = pi ṗi = ai−1eqi−1−qi − aieqi−qi+1 . (3.2)

Here {pi, qi} are canonical variables and the periodicity conventions qi+n = qi and pi+n = pi
are always assumed for the indices of qi and pi .

The exact solution of the equations of motion is due to the existence of the Lax
representation [4, 9]

{H(p, q),L} = [L,A].

Here n× n Lax matrices [4, 9] for the Toda lattice are given by

L(n)(µ) =
n∑
i=1

piEi,i +
n−1∑
i=1

(
eqi−qi+1Ei+1,i + aiEi,i+1

)
+ µeqn−q1E1,n + anµ

−1En,1

A(n)(µ, q) =
n−1∑
i=1

eqi−qi+1Ei+1,i + µeqn−q1E1,n

(3.3)

where Ei,k denotes the n× n matrix with unity on the intersection of the ith row and the kth
column as the only non-zero entry.

According to [19], canonical transformation of the extended phase space (1.1)

v(p, q) = v(q) = exp(qj − qj+1) H̃ = eqj+1−qj (H − b) b ∈ R (3.4)

maps the Toda lattice into the dual integrable system with the following equations of motion:

dqi
d̃t

= v−1(q)q̇
dpi
d̃t

= v−1(q)ṗi + H̃ (δi,j − δi,j+1). (3.5)

Associated with the different indices j , canonical mappings (3.4) are related to each other by
canonical transformations of the other variables (p, q).

Mapping (3.4) gives rise to the following transformation of the Lax matrices:

L̃(µ) = L(µ)− H̃Ej,j+1 Ã(µ) = v−1(q)A(µ). (3.6)
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At ai = 1 the Poisson brackets relations for the n × n Lax matrices can be expressed in the
r-matrix form

{ 1
L(µ),

2
L(ν)} = [r12(µ, ν),

1
L(µ)] + [r21(µ, ν),

2
L(ν)].

Here we used the standard notation
1
L(µ) = L(µ)⊗ I 2

L(ν) = I ⊗ L(ν)
r21(µ, ν) = −*r12(ν, µ)*

and * is the permutation operator in Cn × Cn [5]. Canonical transformation of the extended
phase space (3.4) maps the constant r-matrix for the Toda lattice

r12(µ, ν) = rconst12 (µ, ν) = 1

µ− ν

(
ν
∑
m�i

+µ
∑
m<i

)
Eim ⊗ Emi

into the following dynamical r-matrix:

r̃12(µ, ν) = rconst12 (µ, ν) + rdyn12 (µ, ν) r
dyn

12 (µ, ν) = Ã(ν, q)⊗ Ej,j+1

where the second Lax matrix Ã(ν, q) and, therefore, dynamical r-matrix r̃12 depend on
coordinates only.

The corresponding transformation of the spectral curves looks like

C : −µ−
∏n
i=1 ai

µ
= P(λ) = λn + λn−1p + λn−2

(
1
2p2 −H ) +

n−3∑
i=1

Jiλ
i

(3.7)

C̃ : −µ− (aj − H̃ )∏n
i �=j ai

µ
= P̃ (λ) = λn + λn−1p + λn−2

(
1
2p2 − b) +

n−3∑
i=1

J̃iλ
i .

Here p = J1 = ∑
pi is a total momentum,H and H̃ are the corresponding Hamilton functions

and Ji, J̃i are integrals of motion.
Using the standard form of the hyperelliptic curvesC and C̃ (3.7) and by applying Arnold’s

method [1, 4], action variables have the form

si =
∮
Ai

1

2

P(λ) +

√√√√P(λ)2 − 4
n∏
i=1

ai

 dλ

(3.8)

s̃i =
∮
Ãi

1

2

P̃ (λ) +

√√√√P̃ (λ)2 − 4(aj − H̃ )
n∏
i �=j
ai)

 dλ

where Ai and Ãi are A-cycles of the Jacobi variety of the algebraic curves (3.7), respectively
[4]. In fact, polynomialsP(λ), P̃ (λ) andA-cycles depend on the values of constants of motion,
which are dropped in the notation. The Abel transformation linearizes equations of motion by
using first kind Abelian differentials on the corresponding spectral curves.

Let parameters ai determine the potential of the Toda lattice (3.1) and parameters ãi and
b define the potential of the dual system (3.4). At the special choice of the values of integrals
of motion

H = b H̃ = ãj −
∏n
ai∏n

i �=j ãi
Ji = J̃i = αi (3.9)
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the initial spectral curve is equal to the resulting curve (3.7). Thus, as for the Maupertuis–
Jacobi mapping [2], integral trajectories of the Toda lattice coincide with the trajectories of
the dual system on the intersection of the corresponding common levels of integrals Mα and
M̃α . In the neighbourhood of this intersection we can introduce the common set of action
variables (3.8) for both systems. So, in this small subvariety of the phase space M function
v(p, q) = v(s) depends on the action variables only.

Another 2 × 2 Lax representation [7, 15] for the same Toda lattice is equal to

T (λ) = L1(λ) · · ·Ln(λ) Li =
(

λ + pi eqi

−ai−1e−qi 0

)
(3.10)

such that

dLi
dt

= LiAi − Ai−1Li
dT

dt
= [T (1...n), An]

where

Ai =
(

λ eqi

−aie−qi−1 0

)
. (3.11)

Canonical transformation of the extended phase space (3.4) gives rise to the following
transformation of the Lax matrices

T̃ (λ) = L1 · · ·Lj−1

[
LjLj+1 +

(
H − b 0

0 0

)]
Lj+2 · · ·Ln

Ãn(λ, q) = v−1(q)An(λ, q).

(3.12)

Note, that for the second Lax matrices A we always have a same form of the transformations
(3.6) and (3.12) for all the considered integrable models [17–20].

At ai = 1 the Poisson bracket relations for the 2 × 2 Lax matrices T (λ) (3.10) satisfy the
following Sklyanin r-matrix relation:

{ 1
T (λ),

2
T (ν)} = [R(λ− ν), 1

T (u)
2
T (ν)] R(λ− ν) = *

λ− ν . (3.13)

Mapping (3.4) transforms these quadratic relations into the following polylinear ones:

{
1

T̃ (λ),
2

T̃ (ν)} = [R(λ− ν),
1

T̃ (λ)
2

T̃ (ν)] + [rdyn12 (λ, ν),
1

T̃ (λ)] + [rdyn21 (λ, ν),
2

T̃ (ν)].

The corresponding dynamical r-matrix is given by

r
dyn

12 (λ, ν) = An(λ, q)⊗
(
L1 · · ·Lj−1

(
1 0

0 0

)
Lj+1 ⊗ Ln

)
.

Here all the matrices Lk depend on the spectral parameter ν and An(λ, q) is the second Lax
matrix (3.10).

Now let us look at the separated variables in framework of the traditional consideration of
the Toda lattice. Complete list of references can be found in [9, 4, 15]. Below, we put ai = 1
and j = 1 without loss of generality, such that

H̃ = exp(q2 − q1)(H + b) T̃ =
[
L1L2 +

(
H + b 0

0 0

)]
L3 · · ·Ln.
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This transformation changes the first row of the Lax matrix T (λ) only

T =
(

A(λ) B(λ)

C(λ) D(λ)

)
�→ T̃ =

(
Ã(λ) B̃(λ)

C(λ) D(λ)

)
. (3.14)

The separation variables {λ1λ2 . . . , λn−1} for the both system are zeros of the non-diagonal
common entry

C(λ) = γ
n−1∏
i=1

(λ− λi). (3.15)

An additional set of variables is defined by the second common entry

µi = D(λi) i = 1, . . . , n− 1.

Variables {λi, logµi} are canonically conjugated

{λi, logµk} = δik
and the original symplectic form is written as

� =
n−1∑
i=1

d logµi ∧ dλi + d log γ ∧ dp

where γ is defined by (3.15). From det T (λ) = 1 and det T̃ (λ) = (1 − H̃ ) one immediately
obtains one-dimensional equations

A(λi) = µ−1
i µi + µ−1

i = P(λi)
Ã(λi) = (1 − H̃ )µ−1

i µi + (1 − H̃ )µ−1
i = P̃ (λi).

(3.16)

For the special choice of parameters and values of integrals (3.9) the initial separated equations
coincide with the resulting ones.

Finally, let us consider the Bäcklund transformation Bν for the Toda lattice [7, 13]. As
is well known [3], transformation Bν is a canonical transformation (p, q) �→ (P,Q) of the
initial phase space M preserving all the integrals of motion

Ik(p, q) = Ik(P,Q) (3.17)

(see [16] for a more detailed list of properties of Bν).
For the Toda lattice the canonical transformation Bν may be described by the following

generating function [7]:

Fν(q |Q) =
n∑
i=1

(
eqi−Qi − eQi−qi+1 − ν(qi −Qi)

)
(3.18)

such that

pi = ∂F

∂qi
Pi = − ∂F

∂Qi
. (3.19)

To prove that Bν preserves integrals of motion (3.17) one can verify that Bν preserves the
spectrum of the Lax matrix L(µ) (3.3)

M(µ, q,Q)L(µ, p, q) = L(µ, P,Q)M(µ, q,Q) (3.20)
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where

M(µ, q,Q) =
n−1∑
i=1

eQi−qi+1Ei+1,i + µeQn−q1E1,n (3.21)

(see [12] for a detailed account of the theory of the Bäcklund transformation as a gauge
transformation).

As integral trajectories of the initial system coincide with trajectories of the resulting
system let us substitute a new Lax matrix L̃(µ) into the Darboux equation (3.20) with the
same matrix M(µ, q,Q). To resolve the obtained equation for the canonical transformation of
the extended phase space at the arbitrary index 1 � j � n one finds that the new generating
function is a shift of the initial generating function

F̃ν(q |Q) = Fν(q,Q) + H̃eQj−qj+1 = Fλ(q,Q) +5F. (3.22)

In (3.22) the Hamiltonian H̃ has to be considered as an independent variable of the extended
phase space ME . It means that in (3.19) all the partial derivatives of H̃ with respect to any
other coordinates of ME are equal to zero. Thus, the new generating function F̃ gives rise to
canonical Bäcklund transformations of the extended phase space ME .

As above, the same Bäcklund transformations Bν (3.18) and B̃ν (3.22) are isospectral
deformations of the corresponding 2 × 2 Lax matrices T (λ) and T̃ (λ). For the Toda lattices
the intertwining relations are equal to

Mi(λ, ν)Li(p, q) = Li(P,Q)Mi+1(λ, ν)

where

Mi(λ, ν) =
(

1 eQi−1

−e−qi ν − λ− eQi−1−qi

)
.

The same relations may be used after canonical transformation of the extended phase space at
i �= j, j + 1. One additional non-factorized relation is given by

Mj(λ, ν)

[
Lj(p, q)

(
λ + pj+1 ajeqj+1

−e−qj+1(1 + H̃ ) 0

)]

=
[
Lj(P,Q)

(
λ + Pj+1 ajeQj+1

−e−Qj+1(1 + H̃ ) 0

)]
Mj+2(λ, ν).

The characteristic properties of the new Bäklund transformation B̃ν are verified following [16].
To prove the spectrality property we have to use one non-factorized relation as well.

Recall, the correspondence between the kernel of the corresponding quantum Baxter Q-
operator and the function Fλ(q |Q) is given by the semiclassical relation [13, 16]. Change of
the time (3.4) gives rise to factorization of the Q-operator in the semiclassical limit

Q̃ ∼ exp(−iF̃ /h̄) = Q exp(−i5F/h̄).

Having obtained a simple change of the separated equations (3.16), one can hope that there
is also a simple modification of the one-dimensional Baxter equations in quantum mechanics.
Recall, from the Sklyanin work [10, 15] one knows that the eigenfunctions of the quantum
Toda lattice Hamiltonian are given by

ψE(q) =
∫
C(λ,E)ψλ(q) dλ C(λ,E) =

n−1∏
j=1

c(λj , E).
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Here ψλ are renormalized Whittaker functions and functions c(λ,E) satisfy the one-
dimensional Baxter equation

P(λ)c(λ,E) = inc(λ + ih̄, E) + i−nc(λ− ih̄, E)

whereP(λ) is a trace of the quantum monodromy matrixT (λ). In the classical limit polynomial
P(λ) enters in the spectral curve (3.7).

Using a similar approach [10, 15], we can suppose that the eigenfunctions for the dual
system are expressed in terms of the same Whittaker functions

ψ̃Ẽ(q) =
∫
C̃(λ, Ẽ)ψλ(q) dλ

whereas the corresponding one-dimensional Baxter equation has to be changed

P̃ (λ) c̃ (λ, Ẽ) = in
(
1 − Ẽ) c̃ (λ + ih̄, Ẽ) + i−n c̃ (λ− ih̄, Ẽ)

in accordance with the corresponding classical separated equations (3.16). In the classical
limit the polynomial P̃ (λ) enters in the spectral curve (3.7).

It is known in classical mechanics that the harmonic oscillator may be mapped into the
Coulomb model by using a canonical change of the time (see references within [19]). In
quantum mechanics, the similar duality of the corresponding eigenvalue problems has been
used by Schrödinger, Fok and many others. For instance, in the Birman–Schwinger formalism
we can estimate the spectrum of the Hamiltonian H̃ by using the known spectrum of the dual
Hamiltonian H . So, it will be interesting to study such a duality within the framework of the
quantum Q-operator theory, as an example for the Toda lattice.

4. Conclusion

We discuss canonical transformations of the extended phase space ME , which are associated
with the various parametric forms of a common Lagrangian submanifold. According to the
Liouville–Arnold theorem [1], integrability is a geometric property and, therefore, the above
mentioned transformations of ME preserve the integrability.

So, using the known Lagrangian submanifold of some integrable system we can try to
obtain new integrable models related to various parametric forms of this submanifold. In this
case, we can expect that the initial and resulting integrable systems have a lot of common
properties.

In this paper, starting with the Toda lattice and the Henon–Heiles system we construct
another integrable system with the same integral trajectories, separated variables and action
variables. The shift of the generating function of the corresponding Bäcklund transformation
is given in an obvious form. We can see that the additional term to the generating function is
proportional to the Hamilton function for the both integrable systems.
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[12] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[13] Pasquier V and Gaudin M 1992 J. Phys. A: Math. Gen. 25 5243
[14] Ramani A, Grammaticos B and Bountis T 1989 Phys. Rep. 180 159
[15] Sklyanin E K 1985 Lecture Notes in Physics vol 226, p 196
[16] Sklyanin E K and Kuznetsov V B 1998 J. Phys. A: Math. Gen. 31 2241
[17] Tsiganov A V 1999 J. Phys. A: Math. Gen. 32 7965
[18] Tsiganov A V 1999 J. Phys. A: Math. Gen. 32 7983
[19] Tsiganov A V 2000 J. Phys. A: Math. Gen. 22 4169–82

(Tsiganov A V 1999 Canonical transformations of the extended phase space, Toda lattices and Stäckel family
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